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Abstract: The application of computer graphics to input and output chemical structures is described. The 
graphics program which has been developed for use in computer-assisted synthetic analysis allows a high degree of 
interaction between man and computer. Details are given with regard to the performance of the graphics program, 
its organization, structure, and adaptation to a particular machine (Digital Equipment Corporation PDP-I). 

Previously we have discussed the general theory of 
synthetic analysis as applied to complex mole­

cules and a particularly simple yet powerful technique 
for the design of organic syntheses which has been 
termed the "logic-centered" approach.1 In its "pure" 
form this method starts from the synthetic objective or 
"target molecule" and is directed in a series of analyt­
ical stages to a set of possible synthetic starting points. 
The first step is the derivation of the set of precursor 
molecules which can reasonably be expected to be con­
verted to the target by one synthetic reaction or a simple 
sequence of reactions. Each precursor molecule so 
generated is then considered to be a target and analyzed 
similarly, generating a "tree" of synthetic intermediates. 
Each precursor is in some way simpler than the target 
from which it was derived or leads in further analysis 
to precursors which are simpler. The analysis termi­
nates when precursors are elaborated which are con­
sidered to be relatively simple or readily available. 

The exceedingly large number of intermediates which 
would be involved in a comprehensive synthesis tree 
for a complicated molecule could only be generated by 
the expenditure of very large amounts of time and effort 
by a knowledgeable chemist. Some time ago we em­
barked upon the task of writing an experimental prob­
lem-solving computer program to assist a chemist in 
the more cumbersome aspects of synthetic analysis. 
The results of the first phase of this work and a general 
background of the computer-assisted synthetic analysis 
technique have recently been presented.1 The early 
program, designated OCSS (Organic Chemical Simu­
lation of Synthesis), was designed to be used interac­
tively in real time by the chemist. It made possible a 
wider and more rapid investigation of the synthetic tree 
and allowed an unbiased evaluation of the principles 
and systematics of the program in a way which led nat­
urally to improvement and extension. The validity of 
the synthetic tree generated by the machine is a true 
reflection of the effectiveness of the logic-centered 
principles, since a computer cannot rely on "prior syn­
thetic experience" or judgement. 

(1) (a) E. J. Corey and W. T. Wipke, Science, 166, 178 (1969); (b) 
see also E. J. Corey, Pure Appl, Chem., 14, 19 (1967). 

Currently a second generation program called LHASA 
(Logic and Heuristics Applied to Synthetic Analysis), 
partly the result of experience with the earlier program, 
is in use and is serving as a vehicle for the next stage of 
evolutionary development. This paper introduces a 
series describing the organization, operation, and per­
formance of LHASA. This series is designed to give the 
reader who has some knowledge of computers and a 
programming language a view of how the programming 
was done and some feeling for the decisions and ideas 
which are basic to the program design. There are a 
number of texts at varying levels which can supply 
fundamental information on computer science and pro­
gramming at or above the level which has been assumed 
in these papers.2 The division of material in the papers 
parallels the program functional divisions (see Figure 2). 
The graphical input and output have been previously 
discussed in detail.la This paper is concerned with 
general program organization, interactive graphics, 
program control, and data structures. Subsequent 
papers cover chemical perception3"* from the connection 
table, representation, selection, and operation of chem­
ical transforms and strategy,315 and the analysis of cyclic 
networks.30 

This paper also describes the overall environment of 
LHASA and the data structures and internal relation­
ships among the functional modules. One of the most 
important features of LHASA is the graphical input and 
output devices that are used, LHASA and its predecessor 
OCSS were among the first artificially intelligent prob-

(2) The following references are listed approximately in order of in­
creasing sophistication: (a) A. I. Forsyth, T. A. Keenan, E. I. Or-
ganick, and W. Sternberg, "Computer Science, a First Course," Wiley, 
New York, N. Y., 1969; (b) A. Ralston, "Introduction to Programming 
and Computer Science," McGraw-Hill, New York, N. Y., 1971; (c) 
I. Flores, "Computer Programming," Prentice-Hall, Englewood CHtTs, 
N. J., 1966; (d) A. T. Berztiss, "Data Structures, Theory and Practice," 
Academic Press, New York, N. Y., 1971; (e) D. G. Hays, "Introduction 
to Computational Linguistics," Elsevier, New York, N. Y., 1967; (f) P. 
Wegner, "Programming Languages, Information Structures and Ma­
chine Organization," McGraw-Hill, New York, N. Y., 1968; (g) E. A. 
Feigenbaum and J. Feldman, Ed., "Computers and Thought," McGraw-
Hill, New York, N. Y., 1963; (h) M. Minsky, Ed., "Semantic Infor­
mation Processing," MIT Press, Cambridge, Mass., 1968. 

(3) (a) E. J. Corey, W. T. Wipke, R. D. Cramer III, and W. J. Howe, 
/ . Amer. Chem. Soc, 94, 431 (1972); (b) E. J. Corey, R. D. Cramer III, 
and W. J. Howe, ibid., 94, 440 (1972); (c) E. J. Corey and G. A. Peters-
son, ibid., 94, 460 (1972). 
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Figure 1. PDP-I installation at Harvard's Cruft Laboratory. The 
diagram shows the layout of principal units of the computer. All 
peripherals are connected to the central processor (CP) except the 
four display scopes that are driven by a separate processor. The 
scopes receive instructions from the CP and can share the core 
memory. 

lem solvers to use interactive graphics and the first in the 
chemical area to accept chemical structural diagrams 
hand-drawn in the normal way using an electrostatic 
stylus and tablet (Rand).la 

Hardware Organization. The computing hardware 
used in this research consists of a Digital Equipment 
Corp. (DEC) PDP-I computer with a 24,576 (18-bit) 
word core memory. This computer is a single address 
machine with a basic cycle time of 5 jusec and add time 
of 10 yusec. It has two registers, the usual complement 
of fixed point arithmetic, logical, shift, rotate, and skip 
instructions, single level indirect addressing, and a 16-
channel priority interrupt system. Associated with the 
system is a DEC tape transport capable of holding two 
microtapes, a 300-lpm (Analex) printer, a 131,072-
word, slow-speed, magnetic drum (35 msec/256 words), 
a DEC type-30 scope for program editing, a DEC 340 dis­
play with four slave scopes and light pens, a Data Equip­
ment Corporation Grafcon (Rand) tablet, a CaI Comp 
plotter, and various assorted devices for interactive in­
put. The particular configuration is shown in Figure 1. 

Software Organization. The PDP-I system software 
includes one programming language called DECAL, which 
provides procedures; "for" loops; and conditional, 
arithmetic, and assignment statements, and which in 
these respects is similar to ALGOL. Subscripting and 
floating point operations can be executed interpretively. 
DECAL also permits intermixing of assembly language 
with DECAL source statements and can be extended by 
user-defined "action operators" and "instruction gen­
erators." 
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Figure 2. Functional subdivisions of LHASA. 

The monitor system provides a linking loader which 
permits references between memory banks, a simple 
text editor which uses Type 30 scope, a debugging pack­
age called DDT, input-output routines, and a subrou­
tine package called LIB340 to simplify use of the 340 
display. The capabilities of the display system and a 
description of the LIB340 routines are given in Ap­
pendix I. 

Organization of LHASA. The program is organized 
into five basic functional modules: (1) graphical com­
munication, (2) strategy and control, (3) perception of 
structural features, (4) symbolic structural manipula­
tion, (5) evaluation of precursors. The interrelation 
of these modules is shown in Figure 2. Each module 
performs a specific function and each has well-defined 
inputs and outputs. The control module contains a 
common data area, a library of basic support routines, 
and the master executive. Consequently, the control 
module is always resident in memory to coordinate the 
activities of the rest of the programs. All other mod­
ules are called by the executive and in principle can share 
memory with one another, i.e., only one of the other 
four modules need be in core memory at a time— 
the time during which that module is being ex­
ecuted. Modular construction not only simplifies 
the programming but also provides a way to fit a large 
program into a small computer memory. In this way 
LHASA, a program of 50 K words, is able to execute on 
a computer with a memory of only 24 K words. 

Each module consists of many subroutines and one 
or more main routines. Groups of these routines 
may form subfunctions which are mutually exclusive in 
execution and can also overlay one another in memory. 
Currently there are eleven overlay segments, each 
of which fits into one of three special regions of core 
memory, LHASA contains an overlay handler which 
assures that a segment is in core before passing control 
to it and also avoids rereading the segment from the 
drum if the segment is already present in core. The 
time required to bring an overlay segment (3 K words 
long) from the drum into core memory is about 
0.23 sec. 

Typical Analysis. A typical analytic session with 
the computer will now be described from two vantage 
points: that of the chemist treating the program as a 
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Figure 3. Man-machine interaction diagram. Arrows indicate 
the flow of control between the chemist and the computer during an 
analysis session. Approximate times required for each stage of 
processing are shown at right. 

"black box" and that of the program's internal opera­
tions in response to the chemist's requests. 

The overall flow of control between man and ma­
chine during analysis is diagramed in Figure 3. Typ­
ical elapsed times for each phase are shown at the right 
of the figure. While the computer has control, the 
chemist's controls are deactivated. Lengthy processes 
may be interrupted by the chemist by depressing the 
pen anywhere in the drawing box. The program then 
returns control to the chemist, flashing a message (You 
called?) when it reaches a convenient stopping place. 
As much as half of the time for an analysis is that re­
quired for the chemist to make a decision and notify 
the program. 

Viewpoint of the Chemist. Once the program has 
been started via teletype commands to read the contents 
of a microtape into the computer and to start the pro­
gram, there are two displays on the scopes at any one 
time (see Figure 4). Scope 1 contains the input display 
(display 1), and scope 2 has the title and buttons on 
what will later become the tree display (display 3). 
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Figure 4. (Top) Display 1. (Middle) Display 2. (Bottom) Display 3. 

(Display 2 replaces display 1 at a later part in the anal­
ysis.) The position of the tip of the Rand pen in x,y 
coordinates is displayed on scope 1 as a small cross. 
Whenever the chemist presses the pen down on the 
tablet, the cross becomes brighter. Most of the words 
and symbols on the display are "buttons" (control 
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words) which can be activated by moving the tracking 
cross via the pen to the first letter in one of the words 
and depressing the pen. The word touched will be­
come brighter and remain so until the pen is depressed 
outside the drawing box. Whenever this operation 
is applied to the word DRAW, the program is ready to 
accept new structural input. Structures are input 
within the center box, using the standard organic chem­
ical format, where a line represents a bond, and nodes, 
or the ends of lines, represent atoms. All atoms are 
assumed to be carbon unless specified otherwise. Since 
the program assumes saturation of all atoms, hydrogen 
atoms are drawn ordinarily only to specify stereochem­
istry or to create familiar-looking functional groups. 

To draw a bond, the pen is depressed inside the 
drawing box and moved along in this "pen-down" 
state. A line appears joining the point where the pen 
was pushed down with the current coordinates of the 
pen. When the pen is lifted, the line is "frozen." If 
the end point of a line is reasonably close to the end 
point of another line, the end of the new line is shifted 
to that of the old. Thus drawings can be somewhat 
sloppy, but the display will be automatically corrected. 
Drawing additional bonds between two atoms which 
are already connected creates the display of a double 
bond, and then a triple bond. If one attempts to 
draw excess bonds to any atom, the message VALENCE 
EXCEEDED is flashed on the screen and the offending 
bond is erased. 

Atoms may be specified as noncarbon by pushing 
the pen down on one of the six atomic symbols at the 
bottom of the drawing box. This transforms the 
tracking cross into whichever symbol was pushed. 
When the chemist then depresses the pen on a node 
in the molecule, a copy of the symbol "sticks to" the 
node. The three remaining symbols in the atom sym­
bol line at the bottom of the box—plus, up-arrow, and 
minus—are used similarly to designate atoms that are 
positively charged, free-radical, and negatively charged. 
The presence of a charge on an atom allows attach­
ments to that atom in excess of the normal valence. 

Once a structure has been drawn, the chemist may 
straighten up the molecule or move certain atoms out 
of the way of others to make a drawing less confusing 
by pushing the MOVE "button." Then, when the pen 
is depressed on an atom, the atom appears glued to 
the tracking cross. As the depressed pen is moved, 
the atom and all bonds attached to it follow the pen 
tip until the pen is raised. 

Input mistakes may also be corrected by pushing 
the ERASE button. While the ERASE word is bright, 
pushing the pen down on an atom causes deletion of 
that atom and all bonds connected to it. A bond may 
also be deleted by depressing the pen on the middle of 
a bond. Any isolated atoms remaining after an atom 
or bond deletion are automatically removed. Artistic 
disasters may be destroyed by pressing the RESTART 
button, which completely clears the drawing box and 
reinitializes the atom and bond tables. 

Pressing DOWN and then pointing to a bond in the 
structure turns that bond into a dotted line. Dotted 
bonds may be restored to their normal state by the use 
of the UP button. This process is useful only to give a 
three-dimensional appearance to a display, since this 
program does not yet understand stereochemistry. 

The chemist may specify particular parts of the mole­
cule to be worked on. To do this, he indicates one or 
more sites of strategic disconnection by pushing BOND 
and then pointing to the desired bonds. These bonds 
become bright, and all nonstrategic bonds dim slightly. 
Pointing to a bond again restores it to its original state. 
The appearance of the display may be returned to 
normal by touching the MODE button, with the knowl­
edge of the strategic bonds being retained. They can 
be shown as bright bonds again by pushing the MODE 
button once more. 

At this input stage, preceding any analysis, there are 
no restrictions on the order or number of times that 
these input commands can be used. However, once 
the input stage is ended, only the MOVE and the BOND 
commands can be used to "fix up" structures, and if 
such later changes are to be made permanent, FIX must 
be pushed after the changes have been made. 

The remaining buttons, DONE or CRASH, can be 
pushed at any time in the analysis to stop the pro­
gram and return control of the computer to the system 
programs. 

Once the target molecule has been completely drawn, 
the chemist begins analysis by pointing to PROCESS. 
The commands on scope 1 (display 1) are replaced by 
a new set of commands (display 2). The target mole­
cule and the box remain unchanged by this operation. 
Meanwhile the program is "processing" the target, 
perceiving functional groups and rings3a and assigning 
an identification number. Return of control to the 
chemist is signalled by a message. 

Ordinarily the chemist will wish to specify a strategy 
and request a synthetic analysis. The available stra­
tegies315 at present consist of one-group and two-group 
analyses, the latter with or without detection of val­
uable functional group exchanges. Pushing FG PAIRS 
or FG SINGLES selects a strategy; TRY FGI EXCH adds 
the search for group exchanges, DO FGI EXCH requests 
performance of a previously created list of exchanges. 
Pushing XCT then starts the selected analysis. "The 
computer's default strategy is to try all strategies se­
quentially until one succeeds in generating a new inter­
mediate. 

Synthetic analysis proceeds in three stages: further 
perception, matching of the perception results against 
data tables,3b and display of the results. An ap­
propriate message is flashed at the beginning of each 
stage. Each structure which results from the analysis 
of a given target molecule is displayed (display 2 of 
Figure 4) along with a three-letter mnemonic desig­
nating the transform (retrosynthetic process, see ref 3b) 
involved and a number designating the rating for that 
transform. In the example shown in Figure 4, the 
target molecule input by the chemist, a tricyclic an­
hydride, is shown in display 1; one of the intermediates 
(no. 16 in the synthesis (a cyclopentene produced by 
ozo, a transform corresponding to the synthetic 
ozonolysis of C H = C H to form CHO OHC) is shown 
in display 2; and the complete synthetic tree appears 
in display 3. 

At the same time as a new intermediate is displayed, 
a new node bearing this structure's "index number" 
is added to the synthetic tree in display 3 (see below). 
The index number (in this case "16") appears in dis­
play 2 above the new intermediate. The index num-

Journal of the American Chemical Society j 94:2 / January 26, 1972 



425 

bers for every ancestor of this intermediate are dis­
played in the upper left corner of display 2 under LINE­

AGE. For this example the ancestors of the inter­
mediate 16 shown in display 2 are structures 7, 4, and 1. 

The display of each new intermediate remains on 
the screen while the computer is "evaluating" the struc­
ture, checking it for valence violations and possible 
duplication of an earlier structure. When evaluation 
is finished, a display of the current target (i.e., the 
particular structure in the synthetic tree which is the 
subject for analysis) replaces the new structure in dis­
play 2 while another intermediate is being generated. 
If the structure failed its evaluation, it is deleted from 
the synthetic tree. Otherwise it may be recalled by 
the chemist after the analysis is finished, or inter­
rupted by the chemist. 

When the computer has finished its analysis of the 
current target, the chemist's control buttons are re­
activated. The numerous options now available to 
him will be discussed. 

The TREE button, in the lower left corner, transfers 
the display of the cross (and control by the chemist) 
onto scope 2, where the current synthesis tree appears 
(display 3). Each node in the tree is a control button, 
labeling one of up to one hundred intermediates in the 
computer's structure index. Pushing a node button is 
the way the chemist designates a new "current" target. 
The molecule corresponding to that node in the tree re­
appears on scope 1 and a cursor symbol " < " is gen­
erated next to the tree button being pushed. The new 
current target can be subjected to synthetic analysis 
just as before, by selecting a strategy and requesting 
execution. A permanent copy of the current target 
can be made on the CaI Comp plotter by pushing the 
display 3 button STRUCTURE, whereas pushing INDEX 
makes a hard copy of the synthesis tree display. A 
series of structures can be "stacked" for hard copy 
without waiting for earlier drawings to be finished and 
while a subsequent synthetic analysis is going on. A 
structure for which a plot has been requested is in­
dicated by a " ." symbol after the corresponding node 
in the synthesis tree. 

Pushing PROCESS on scope 2 returns the cross dis­
play to scope 1. From display 2 the chemist can delete 
the current target from the synthesis tree by pushing 
BAD, while GOOD intensifies display of the synthetic tree 
branches leading from the input target down to the 
current target, INPUT allows return to the structural 
input display, to make any of the changes to the current 
target previously described as legal when the initial in­
put phase has ended. From the input display the 
chemist may also RESTART the program with a new target 
structure or CRASH back to the monitor system. 

Machine Execution. The flow of control in the man-
machine system has just been examined. In discussing 
the flow of control within the machine, it is helpful to 
utilize a state diagram as shown in Figure 5.4 The ex­
ecuting program may be treated as a limited-state ma­
chine which can only be in one state at a given time. 
The states are represented by ellipses. The labeled 
lines leading from each state represent the possible 
changes-in-state that may occur. A label on a line 
specifies the input condition that must exist for a given 

(4) W. M. Newman, AFIPS Con/. Proc, Spring Joint Computer Conf., 
32, 47 (1968). 

Figure 5. State diagram of LHASA. The result of "pushing" one 
of the graphics buttons is indicated by an arrow with the name of 
that button on it. Return to the INPUT WAITLOOP state from any 
of the five states attached to it (DRAW, MOVE, etc.) is accomplished 
by pushing the pen down anywhere outside the drawing box. The 
terms "PD" and "PU" mean "pen down" and "pen up," respectively. 

change of state to occur. Thus, while in the INPUT 
WAITLOOP state, the program continually interrogates 
the RAND tablet for instructions from the chemist to 
enter a new state. For example, when the chemist 
points to the word DRAW, the DRAW state is entered. 
While in this state whenever the pen is pressed down in­
side the drawing box, a temporary line is started, and 
the line is updated until the pen is lifted. On the way 
back to the DRAW state, the line is entered as a bond. 
Drawing is allowed only within the drawing box. If 
the pen is pressed down outside the drawing box, the 
program returns to the INPUT WAITLOOP state, from 
which it may then enter any of the other connected 
states. 

After a molecule is drawn and the PROCESS button is 
pressed, the input display is replaced by display 2, and 
the target molecule is perceived, evaluated, given a can­
onical representation, and entered at the top of the syn­
thetic tree. These operations are described in later 
papers. The PROCESS WAITLOOP state is then entered. 
The program now waits for special requests or for XCT, 
the command to proceed. Buttons labeled DO FGI 
EXCH and TRY FGI EXCH cause certain flags to be set and 
then return the program to the PROCESS WAITLOOP state. 
The XCT button releases LHASA to enter the RUN state 
where it begins analysis of the current target structure 
in accordance with any special request flags that were 
set. If no flags were set, RUN chooses a strategy based 
on the structural features of the target molecule and 
guides execution according to that strategy (see ref 3b 
for details). The executive directs the selection of 
transforms, generation and display of precursors, eval­
uation of precursors, and updating of the synthesis tree. 
Return from the RUN state occurs automatically when 
it has completed generation of one level of precursors, 
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but may occur prematurely if the chemist interrupts or 
if the program is out of core memory or drum memory. 

Graphics Programming. There are three basic con­
trol displays in LHASA, although only two scopes are 
used. These are DISPLAY 1, the input controls, 
visible on scope 1 when in the INPUT WAITLOOP state; 
DISPLAY 2, the processing controls, visible on scope 1 
after LHASA enters the PROCESS WAITLOOP state; and 
DISPLAY 3, the synthesis tree and output controls, 
visible on scope 2 at all times (see Figure 4). 

The graphics module consists of three types of pro­
grams, those which create static displays such as con­
trol words, those which create dynamic displays such as 
structural diagrams, and those which handle graphical 
interaction with the chemist. The static displays are 
created only once by GENFRM during the initialization 
process. GENFRM generates the display code executed 
by the 340 scopes for each of the three basic displays, 
including control words, the drawing box, the tracking 
cross, and the main Frame program shown below. 

Table I. Summary of LHASA Control "Buttons" 

Frame 
top Display LHASA 

Call DISPLAY1/DISPLAY2 
C a l l STRUCTURE 
C a l l INDEXPICT 
C a l l TEMPBOND 
Call DISPLAY3 
C a l l MESSAGE 
C a l l STAT 
C a l l TRACKER 

Go to top 

Title of program 
Control of INPUT/PROCESS 
Current structure pict 
Synthesis tree pict 
"Rubber band bond" 
Control of TREE state 
Flashing messages to chemist 
Statistics of memory resources 
Tracking symbol for pen 
Loop to refresh display 

Substitution of DISPLAY 2 for DISPLAY 1 is accom­
plished by simply substituting the "call" in the appro­
priate position in the frame. The other picture calls are 
self-explanatory from the comments beside the calls to 
them. Pictures are removed from view by replacing 
the call to that picture by a call to a dummy picture 
which displays nothing. 

GENFRM also sets up the lines of communi­
cation to be followed when any of the control but­
tons are pushed, by storing the name of the action rou­
tine with the location of the displayed control word 
text. Both the display and the lines of communication 
are established by a simple call to BUTTON ("text," x, y, 
action routine, arbitary parameter). 

The remaining routines in the graphics module dy­
namically create the code necessary to display the struc­
ture (GENSTRUC), the synthesis tree (structure index) 
(GENIDX), and the lineage of the current structure 
(GENLIN). GENSTRUC operates from the connec­
tion table and creates display instructions to display the 
structure represented by the tables. As indicated 
above, bonds that are "down" are displayed dotted, 
and "strategic bonds" are displayed brighter than 
others. When a new picture code has been completed, 
GENSTRUC substitutes the new picture for the old. 

Similarly, GENIDX operates from the actual tree 
structure of intermediates and creates a display pro­
gram to display the structure of the current synthesis 
tree. Each node of the tree is labeled with the unique 
number designating the structure it represents. When 
a structure is evaluated by the chemist as being good, 
the corresponding symbol in the tree and the path from 
the target to that symbol are displayed more brightly 
than the others. In this way the chemist can easily 
keep track of those synthetic paths in which he is most 
interested even when the synthetic tree contains many 
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Try only 2-group chemistry 
Try only 1-group chemistry 
Try functional group introduction 

(dummy) 
During analysis of possible transforms find 

group interchange subgoals 
Try group-interchange subgoals if there 

are any 
Designate current structure "good" 
Delete current structure and subtree if any 
Leave PROCESS WAITLOOP state and enter 

INPUT WAITLOOP state 

Leave PROCESS WAITLOOP state and enter 
TREE WAITLOOP state 

Queue current structure for hard copy 
output 

Queue picture of current tree for hard copy 
output 

Leave TREE WAITLOOP state and enter 
INPUT WAITLOOP state 

Leave TREE WAITLOOP state and enter 
PROCESS WAITLOOP state 

Display this structure and make it the 
current target 

nodes. The tree appears with each parent centered 
over its sons, and the sons are evenly spaced. The tree 
thus is always centered and balanced on the screen re­
gardless of structure. 

GENLIN traces the lineage of the current structure 
up the tree to the target structure and displays this 
under the word LINEAGE on display 2. The number 
of the structure is displayed directly above the drawing 
box. It also displays the name and the rating of the 
transform315 which produces the current structure. 
This information comes from the structure data block 
(see Figure 6). The numbers at the lower left of dis­
plays 1 and 2 indicate, from top down, the per cent of 
dynamic storage currently in use, the per cent of list 
storage currently in use, and the number of unused 
drum tracks (each track is 25610 words) (see below). 

HIT5 is a collection of over 25 programs which han­
dle interaction by servicing the numerous buttons on 
the displays. The main routine, called WAITLOOP, 
simply watches the pen status until it changes to pen 
down. At that time checks are made to see what state 
LHASA is in and whether the pen is in or out of the draw­
ing box area. If the pen is outside the drawing box, 
then the pen coordinates are compared with the list of 
button coordinates. If the coordinates of the pen and 
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a button correspond, control is transferred to the action 
address stored with those coordinates. 

The action routine then may change the display, 
change the state of LHASA, or begin a long sequence of 
computation. Eventually the routine returns control 
to WAiTLOOP, which waits for more interaction. 

Two of the buttons call routines which initiate yet 
another type of graphic program, the plotter program. 
When a permanent (hard) copy of a structure is re­
quested, RELOC is called which builds a relocatable 
version of the display code for the requested picture. 
The new display list is written onto the drum, and an 
asynchronous program called PLOT is initiated. This 
routine reads the display file on the drum and interprets 
it just as the DEC-340 hardware does, except that the 
program then outputs instructions to the plotter to 
simulate the actual display by the 340 scope. When­
ever the plotter completes a command, it interrupts the 
computer, which may have been doing chemistry, asks 
PLOT to provide the next instruction, and then allows 
the computer to return to whatever it was doing. This 
programming technique allows the chemist to request 
many structures and then to continue chemical proces­
sing. A queue of structures is created on the drum. 
When PLOT finishes one structure, it releases space on 
the drum occupied by that structure and looks to see 
whether there is another. Since PLOT has all the in­
structions for plotting stored on the drum, its execution 
is independent of whether a structure exists in the syn­
thetic tree at the time the structure is actually plotted— 
the structure may even have been deleted by the chem­
ist. 

Data Structures. The choice of representation for 
information within a computer can have a profound 
effect on the ease of manipulation of that information. 
We chose the connection table described in reference 1 
as the fundamental representation of a chemical struc­
ture. This representation consists of the basic data 
inherent in the structural diagram—connectivity, atom 
types, and bond types. The stereochemical informa­
tion which is represented is not presently used in the 
analysis. All information for structure display and 
chemical analysis is obtained from the connection table 
of the current structures via a set of simple access rou­
tines. The connection table (CT) used is not unique or 
canonical, is not concise, and is not convenient for hu­
man consumption but it does allow the computer direct 
and rapid access to structural information. An impor­
tant feature of the CT is that cyclic molecules are han­
dled as easily as acyclic ones and do not have to be 
treated as a special case.6 

Other notation systems6 gain compactness by using a 
single symbol to represent a group of atoms, but then 
demand explicit treatment in many special cases when 
information is requested which is only implicit in the 
notation. The CT differs from DendraP in that Den-
dral is based on a tree structure and is a linear notation, 
whereas the CT is based on a generalized connected 
graph permitting cycles and is not a linear notation, 

(5) D. J. Gluck, / . Chem. Doc, S, 43 (1965). 
(6) For a survey of topological representations see A. Opler, Proc. 

Amer. Doc. Inst., 499 (1964); F. A. Tate, Annu. Ret. Inform. Sci. 
Technol., 2, 285 (1967). 

(7) J. Lederberg, G. L. Sutherland, G. G. Buchanan, E. A. Feigen-
baum, A. V. Robertson, A. M. Duffield, and C. Djerassi, J. Amer. Chem. 
Soc, 91,2973(1969). 
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PARENT 

BROTHER 

SON 

DISPLAY NAME 

MISCELLANEOUS 

IDENTITY BL 

TRANSFORM 

OCK 

TYPE 

SPECIFIED STRATEGIC BONDS 

SPECIFIED STRATEGIC BONDS 

MOVE BLOCK 

TRANSFORM RATING 

No. ATOMS DELETED 

ATOM 

No. ATOMS ADDED x 2 

TYPE 

X COORD. 

ATOM 

Y COORD. 

No. BONDS BROKEN 

ATOM 1 ATOM 2 

No. BONDS MADE 

ATOM 1 

No. CHARGES 

CHARGE 

ATOM 2 

CHANGED 

ATOM 

HEADING DATA 

CANONICAL NAME 

No. OF 2 WORD ENTRIES 

ATOM 

NEW X NEW Y 

LENGTH OF BLOCK • INo. DELETED) + (No. ADDED « 2 ) + ( N o . MADE) 

+ (No. BROKEN) + (No. CHARGES CHANGED) + 16 

Figure 6. Structure data block. Each structure in the tree is stored 
in virtual memory using this format. Only the structure which is 
currently being displayed on scope 1 and the original target have 
complete atom and bond tables (see text). The space for this block 
is dynamically allocated when the structure is first generated. 

although it can be made both canonical and linear if 
desired.8 

LHASA uses only two CT's, one for the target structure, 
which never changes during analysis and which is not 
available to the access routines, and one for the current 
structure. The latter is the active CT. Information 
about other structures is permanently stored in blocks, 
each corresponding to a node within the synthetic tree 
representation (see Figure 6). This block contains all 
key information about the structure including the 
changes that must be made to its parent in order to gen­
erate the structure. The first words of this block are 
pointers to the structure's immediate relations, its par­
ent, immediate right brother, and immediate leftmost 

(8) H. L. Morgan,/. Chem. Doc, S, 107 (1965). 
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son. These words are set to — 1 if there is no such re­
lation. The next word contains the number to be dis­
played in the tree as the name of this structure. Word 
5 stores flags such as whether this structure was desig­
nated as GOOD or has been plotted yet; word 6 is a 
pointer to the canonical name for this structure. The 
next word carries the mnemonic which indicates the 
transform3b used to generate this intermediate from its 
parent. The set of bonds designated strategic by the 
chemist are stored in the next two words, while the fol­
lowing word points to a block giving the new coordi­
nates of any atoms reoriented by the chemist. If such an 
action was not performed, or if no bonds were named 
strategic, then the corresponding word(s) in the struc­
ture block contains zero. Following the move block 
pointer is a space for storage of the transform rating. 

The remainder of the block contains the changes to 
be made to the parent to generate this intermediate. 
There are five types of changes: deleting atoms (and 
bonds to them), adding atoms (involves computing rea­
sonable coordinates for them), breaking bonds, making 
bonds, and manipulating electronic charges (either 
moving, deleting, or creating charge). The changes 
are grouped by type, each group being introduced by 
the number of changes of that type (zero if none). An 
atom deleted entry simply contains the name of the 
atom. Each atom added entry of two words contains 
the atom type to be created and the coordinates of the 
new atom. The operation of attaching a new atom to 
one already in a structure also makes an entry in the 
bond made section. An entry in the bond made or bro­
ken section simply contains the names of the two atoms 
involved in the bond. 

The charge changing entries contain the charge type 
( —0 for neutral, —1 for anion, —2 for radical, and —3 
for cation) and the atom on which the charge is to be 
placed. 

The advantage of representing precursors in this 
manner is that the space required to store an intermedi­
ate structure depends only on the changes caused by a 
given transform and not on the number of atoms in the 
structure. Thus the structural part of a block neces­
sary to describe the precursor of an aldol reaction re­
quires 9 words of memory, regardless of the size of the 
molecule. In contrast, to represent this precursor by a 
complete connection and coordinate table would take 
up 160 words of memory for a medium-sized structure 
(20 atoms, 20 bonds). 

The disadvantage is that extra time is required to 
"recall" a structure to "current" status in re-forming 
the proper CT. To do this, RECALL starts with the de­
sired structure block and traces its lineage to the tar­
get. The target CT is copied into the current CT. The 
lineage of the desired structure is then followed in the 
reverse order traced—from the target down to the de­
sired intermediate, the current CT being modified ac­
cording to the changes indicated by each structure 
block in the lineage. The extra processing required 
for this is small, since although the tree may be very 
wide, it rarely attains a depth of greater than 12. With 
the current program and operating system the space 
saved is crucial, since the real limitation is available 
memory. 

The canonical representation of the structure is 
simply a linear bit string constructed from the type of 

unique compacted connection table generated by the 
Morgan algorithm.8 The length of the string used in 
LHASA is 2 + (14 X nb)j\% words where nb is the num­
ber of bonds between nonhydrogen atoms, and the 
words are 18 bits long. Thus the name for cubane is 
11 words long. Duplication between structures is 
tested by comparison of names starting at the first 
word. Since the first word contains the number of 
atoms and bonds, the matching need proceed further 
only if the structures being compared have the same 
number of atoms and bonds. The Morgan format has 
been adequately documented elsewhere8 and will not be 
discussed here. 

The philosophy in the development of LHASA has 
been to let the data and the uses of the data determine 
subsequent data structures. This has resulted in a 
variety of different types of data structures and rou­
tines to handle them:2d arrays—the normal FORTRAN 
type of subscripted array, except the memory for them 
is dynamically allocated; ^-component blocks—a 
block of contiguous dynamic storage accessed by spe­
cial routines (a "dynamic" operation is one that is car­
ried out as the program is running, in contrast to an 
operation such as allocation of array space by FORTRAN, 
which is done before program execution); set—a 
block of three contiguous words in which the /th bit is 
a one if the rth thing is a member of this set; otherwise 
the rth bit is zero; list—series of two-component 
"cells," the first component usually contains data, and 
the second addresses (points to) the next "cell" in the 
list; combinations—arrays of sets, lists, or n-compo-
nent blocks; lists of ^-component blocks; etc. 

Each format was used where it was most efficient and 
convenient. Thus the set operations were found to be 
very powerful for parallel processing of structural in­
formation. The sets take advantage of the compu­
ter's ability to perform Boolean operations on 18 bits 
simultaneously. The use of sets has been described 
previously111 and is further discussed in the following 
paper.3a 

Similarly, lists have been found convenient for stor­
ing variable length information quantities such as the 
atoms in a ring or the atoms in a functional group. 
Finally, conversion routines have been used which con­
vert a list of items into a set of items for logical opera­
tions with other sets. 

Resource Management. The use of diverse data 
structures in this work has been aided by a general 
dynamic storage allocation package93 which uses a 
simple algorithm developed by Dr. J. Goodenough for 
the Harvard PDP-I. Requests for blocks of storage 
can be of any size and are filled on a first fit basis. Free 
storage, originally one large block, becomes frag­
mented as storage is allocated and released. All 
blocks are then linked together by ascending core ad­
dress, and a tag in each link is used to indicate whether 
the block is free or used. Allocation then requires a 
simple scan down the chain for the first free block 
large enough to fill a request. Release of a block 
changes the tag to indicate "free," and adjacent free 
blocks are merged to form one large contiguous block. 
This algorithm is not particularly efficient when a large 
percentage of dynamic storage is filled with small 

(9) (a) D. E. Knuth, "The Art of Computer Programming," Vol. 1, 
"Fundamental Algorithms," Addison-Wesley, Reading, Mass., 1968, p 
435; (b) ibid., p 251. 
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blocks because the search time to find a free one is 
lengthy. 

The percentage of dynamic storage used is displayed 
on scope 1. Typical storage utilization ranges as high 
as 90%. Running at such high utilization, however, 
is dangerous because one request which cannot be filled 
causes failure of the program. To prevent the pro­
gram from continuing synthetic analysis when free 
storage is at a dangerously low level, the executive 
monitors the level and, when necessary, returns control 
to the chemist with the message "dynamic storage low." 
The chemist can then prune the synthesis tree to gain 
more storage and proceed. 

The storage used for lists is separate from general 
dynamic storage and is maintained by the common 
method9b of having a list of free cells. Allocation of 
list cells is very efficient, since they are all the same 
size. Return of lists to the free cell pool is the respon­
sibility of the programmer as with IPL-V,

 10 in contrast 
to SLIP11 or LISP,12 which automatically return a list 
when it is no longer referenced. 

Virtual Memory. In the earliest versions of the 
program no auxiliary storage was used, causing a 
severe demand for core memory as the number of inter­
mediates generated grew. This occurred not only 
because the structure representation resided in core 
but also because the display file for the synthetic tree 
and other display information which grew with the 
number of structures also resided in core. 

To relieve this problem, the effective size of memory 
has been expanded by 131 K of virtual memory. The 
virtual memory actually exists only on the drum, but 
through the use of an access package and some instruc­
tion generator macros, it may be referred to by the 
programmer much as though it were in core memory. 
Virtual memory is also dynamically allocated and re­
leased in a similar manner to core memory. Only 
minor changes to LHASA were required to move all 
structure blocks (Figure 6) and canonical names to 
virtual memory. This move increased the running 
time of the program only 5%. The virtual memory 
package, developed in collaboration with Mr. John 
Newell, will be discussed more fully in a later paper. 
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Appendix I 
The DEC-340 display controller obtains its instruc­

tions from the PDP-I memory by "cycle-stealing." It 
can interpret only seven different kinds of instructions. 
The parameter (PRM) instruction specifies one of eight 
intensity levels, one of four scales, and provides a way 
to stop the display. The point (PNT) instruction posi­
tions the display beam in absolute scope coordinates 
in the x direction or the y direction. The slave (SLV) 
instruction specifies the particular scopes on which the 
picture is to appear. The beam on each of the other 
displays follows the same movements, but is blanked. 
The subroutine (SBR) instruction permits structuring of 

(10) A. Newell and F. M. Tonge, Commun. Ass. Computing Mach., 
3, 205 (1960). 

(11) J. Weizenbaum, ibid., 6, 524 (1963). 
(12) J. McCarthy, ibid., 3, 184(1960). 

an image. Typically one positions the beam and then 
calls a symbol subroutine. The subroutine then draws 
the symbol using only relative vectoring instructions. 
In this way the same symbol may appear several places 
on the display. 

The vector (YTR) instruction causes a vector (line) to 
be drawn from the current beam position to a point 
(x + dx, y + dy). The 340 display can only represent 
a vector 128 units in x and y in one instruction. Thus 
the number of instructions required to draw a given 
line depends upon the length of the line. The incre­
ment (INC) instructions allow the specification of up to 
four moves of the beam. They are used to perform in­
cremental plotting (e.g., to generate a vector of 512 
units in x and y) and also to define characters and spe­
cial symbols. 

Standard characters are displayed by a hardware 
character generator using the character (CHR) instruc­
tion. Because the format of the instructions varies, 
each instruction must tell the mode of the next instruc­
tion. A sample program to display the tracking cross 
and the title "LHASA" is given in Table II (explanatory 
comments at right). 

Once started, the display runs independently of the 
PDP-I central processor and produces a static picture. 
To change the picture being shown, the 340 display list 
must be changed. This can be done by changing se­
lected instructions or by regenerating the complete list. 
In practice the former method is used for minor 
changes (e.g., intensity or pen coordinates) and the lat­
ter for major alterations, LHASA utilizes a set of DECAL 
subroutines to create the display list dynamically and to 
handle dynamic storage allocation. 

In LHASA there is a hierarchy of pictures—a frame, 
pictures, and subpictures. The frame is the master pro­
gram made up of calls to pictures and subpictures. 
The scope control unit must start at the beginning of a 
frame. The display continuously runs through the 
frame. If the call to a picture is present in the frame, 
then that picture is visible. The routines to create 
these items are given below 

frame name • < = SFRM (POSTS, ia, fa) 
EFRM() 

pict name • < = SPICT (ia, fa) 
EPICT() 

subpict name • < = SSUB (ia, fa) 
ESU B() 

where SFRM, SPICT, and SSUB declare the beginning of a 
frame, picture, and subpicture, respectively, POSTS is 
an array the length of the number of pictures. The 
routines use ia and fa as the initial and final address of a 
region of core in which the display code will be gener­
ated. If ia = 0 and/a ^ 0, then/a is used as an initial 
estimate for the amount of dynamic storage required 
for the display code. If ia = fa = 0, then a block of 
free storage is found which is just big enough to hold the 
display list generated. The routines return the begin­
ning address of the display list. 

DDN (decimal number) 
DST (address of character string) 

Display decimal number or character string. 

LINE (dx, dy, intensify) 

Corey, et al. / Computer-Assisted Synthetic Analysis 



430 

Table II. Sample Graphics Program Using DECAL 

CROSS: 

csAVE: 

sc2 ILV4 
SLV 5555 
YBP 767 
XBP 319 
DJS CROSS 
PNT 
YBP 920 
XBP 400 
sc8 ILV7 
••371410 
••012301 
• 0 0 
SBR 
DJP START 
DDS CSAVE 
VDX —5 
VDX 10 
VDX —5 
VDX 0 
SBR 
DJP 

PNT 
PNT 
SBR 
SBR 

PNT 
PRM 
CHR 

VTR 
VDY 
VDY 
VDY 
VDY 

PRM 

0 
0 

- 5 
10 

IFY 

IFY ESC 

Scale 2 intensity 4 
Display on all 4 slave scopes 
Position in Y 
Position in X 
Call cross subroutine 
Enter point mode 
Position in Y 
Position in X 
Scale 8 intensity 7 
Up shift, L, H" 
A 1 S 1 A 
Escape from character mode 
Enter subroutine mode 
Loop to refresh display 
Save return address 
Invisible vector 
Draw visible line (horizontal)6 

Invisible vector 
Draw line (vertical) and escape 
Enter subroutine mode 
Return to calling routine 

: Each character is represented by a 2-digit octal number (six bit code). * VDX n = let the component along X be set to n. 

Table III. Program for Display of Movable Line 

LOOPl : TEMP - < = SPICT (0, 0) 
SCALE (1); INTENSITY (4) 
POINT (Xl1 Yl) 
LINE (PENX1 PENY, 1) 
EPICT () 
ARRASE NEWLINE 
NEWLINE <== TEMP 
SUBSPICT (3, NEWLINE1 SCOPE 1) 
IF PENDOWN THEN GOTO LOOP 1 

Start generating pict code 
Set scale and intensity 
Move beam to start of line 
Draw line to current position 
End picture code 
Release old display code 
Rename the picture 
Substitute the new picture 
Loop until pen is lifted 

Draw line from current position (x, y) to (x + dx, 
y + dy). If intensify = 1, the line is visible; '^inten­
sify = O3 invisible. 

POINT (x, y) 

POINT creates instructions to position the beam to (x, y). 

SCALE (1,2, 4, or 8) 

INTENSITY (0-7) 

SCALE sets the scale of the display to one of four values. 
INTENSITY sets the brightness of the beam to one of 8 

values. 

CALL (subpict name) 
POST (pict name, slaves) 
INITIATE (frame name, slaves) 
CSCOPE (i, slaves) 
SUBSPICT (/', pict name, slaves) 

CALL inserts a reference to a subpicture in the code be­
ing generated. 

POST puts a picture in the frame, and slaves specifies on 
which scopes the picture should appear. 

INITIATE starts the display processor execution of the 
frame. 

CSCOPE changes the slave assignment of the /th picture 
in the frame. 

SUBSPICT substitues a new picture for the /th picture in 
iheframe. 

The sample program in Table III dynamically gener­
ates a "rubber-band-like" line between point (Xl, Yl) 
and the current pen position (PENX, PENY). The 
old display list is returned to available memory, and 
the new display list is substituted for its place in the 
frame. In this example PENX, PENY, and PEN-
DOWN are dynamically updated by an interrupt han­
dling program every 40 milliseconds (25 Hz). 
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