
421

Organic and Biological Chemistry

Computer-Assisted Synthetic Analysis. Facile Man-Machine
Communication of Chemical Structure by
Interactive Computer Graphics

E. J. Corey,* W. Todd Wipke, Richard D. Cramer III, and W. Jeffrey Howe

Contribution from the Department of Chemistry, Harvard University,
Cambridge, Massachusetts 02138. Received January 30, 1971

Abstract: The application of computer graphics to input and output chemical structures is described. The
graphics program which has been developed for use in computer-assisted synthetic analysis allows a high degree of
interaction between man and computer. Details are given with regard to the performance of the graphics program,
its organization, structure, and adaptation to a particular machine (Digital Equipment Corporation PDP-I).

Previously we have discussed the general theory of
synthetic analysis as applied to complex mole­

cules and a particularly simple yet powerful technique
for the design of organic syntheses which has been
termed the "logic-centered" approach.1 In its "pure"
form this method starts from the synthetic objective or
"target molecule" and is directed in a series of analyt­
ical stages to a set of possible synthetic starting points.
The first step is the derivation of the set of precursor
molecules which can reasonably be expected to be con­
verted to the target by one synthetic reaction or a simple
sequence of reactions. Each precursor molecule so
generated is then considered to be a target and analyzed
similarly, generating a "tree" of synthetic intermediates.
Each precursor is in some way simpler than the target
from which it was derived or leads in further analysis
to precursors which are simpler. The analysis termi­
nates when precursors are elaborated which are con­
sidered to be relatively simple or readily available.

The exceedingly large number of intermediates which
would be involved in a comprehensive synthesis tree
for a complicated molecule could only be generated by
the expenditure of very large amounts of time and effort
by a knowledgeable chemist. Some time ago we em­
barked upon the task of writing an experimental prob­
lem-solving computer program to assist a chemist in
the more cumbersome aspects of synthetic analysis.
The results of the first phase of this work and a general
background of the computer-assisted synthetic analysis
technique have recently been presented.1 The early
program, designated OCSS (Organic Chemical Simu­
lation of Synthesis), was designed to be used interac­
tively in real time by the chemist. It made possible a
wider and more rapid investigation of the synthetic tree
and allowed an unbiased evaluation of the principles
and systematics of the program in a way which led nat­
urally to improvement and extension. The validity of
the synthetic tree generated by the machine is a true
reflection of the effectiveness of the logic-centered
principles, since a computer cannot rely on "prior syn­
thetic experience" or judgement.

(1) (a) E. J. Corey and W. T. Wipke, Science, 166, 178 (1969); (b)
see also E. J. Corey, Pure Appl, Chem., 14, 19 (1967).

Currently a second generation program called LHASA
(Logic and Heuristics Applied to Synthetic Analysis),
partly the result of experience with the earlier program,
is in use and is serving as a vehicle for the next stage of
evolutionary development. This paper introduces a
series describing the organization, operation, and per­
formance of LHASA. This series is designed to give the
reader who has some knowledge of computers and a
programming language a view of how the programming
was done and some feeling for the decisions and ideas
which are basic to the program design. There are a
number of texts at varying levels which can supply
fundamental information on computer science and pro­
gramming at or above the level which has been assumed
in these papers.2 The division of material in the papers
parallels the program functional divisions (see Figure 2).
The graphical input and output have been previously
discussed in detail.la This paper is concerned with
general program organization, interactive graphics,
program control, and data structures. Subsequent
papers cover chemical perception3"* from the connection
table, representation, selection, and operation of chem­
ical transforms and strategy,315 and the analysis of cyclic
networks.30

This paper also describes the overall environment of
LHASA and the data structures and internal relation­
ships among the functional modules. One of the most
important features of LHASA is the graphical input and
output devices that are used, LHASA and its predecessor
OCSS were among the first artificially intelligent prob-

(2) The following references are listed approximately in order of in­
creasing sophistication: (a) A. I. Forsyth, T. A. Keenan, E. I. Or-
ganick, and W. Sternberg, "Computer Science, a First Course," Wiley,
New York, N. Y., 1969; (b) A. Ralston, "Introduction to Programming
and Computer Science," McGraw-Hill, New York, N. Y., 1971; (c)
I. Flores, "Computer Programming," Prentice-Hall, Englewood CHtTs,
N. J., 1966; (d) A. T. Berztiss, "Data Structures, Theory and Practice,"
Academic Press, New York, N. Y., 1971; (e) D. G. Hays, "Introduction
to Computational Linguistics," Elsevier, New York, N. Y., 1967; (f) P.
Wegner, "Programming Languages, Information Structures and Ma­
chine Organization," McGraw-Hill, New York, N. Y., 1968; (g) E. A.
Feigenbaum and J. Feldman, Ed., "Computers and Thought," McGraw-
Hill, New York, N. Y., 1963; (h) M. Minsky, Ed., "Semantic Infor­
mation Processing," MIT Press, Cambridge, Mass., 1968.

(3) (a) E. J. Corey, W. T. Wipke, R. D. Cramer III, and W. J. Howe,
/ . Amer. Chem. Soc, 94, 431 (1972); (b) E. J. Corey, R. D. Cramer III,
and W. J. Howe, ibid., 94, 440 (1972); (c) E. J. Corey and G. A. Peters-
son, ibid., 94, 460 (1972).

Corey, et al. / Computer-Assisted Synthetic Analysis

422

Tape units
and control

Display
processor

Line printer I

Drum
memory

Central
processoi

6 core
memory

Input/
output

control

Panel

Plotter

micro-
tapes

tele-
Ivpj

Operator
works here

Special
Controls C

Type
writer

CP
display scope

each with light pen

Figure 1. PDP-I installation at Harvard's Cruft Laboratory. The
diagram shows the layout of principal units of the computer. All
peripherals are connected to the central processor (CP) except the
four display scopes that are driven by a separate processor. The
scopes receive instructions from the CP and can share the core
memory.

lem solvers to use interactive graphics and the first in the
chemical area to accept chemical structural diagrams
hand-drawn in the normal way using an electrostatic
stylus and tablet (Rand).la

Hardware Organization. The computing hardware
used in this research consists of a Digital Equipment
Corp. (DEC) PDP-I computer with a 24,576 (18-bit)
word core memory. This computer is a single address
machine with a basic cycle time of 5 jusec and add time
of 10 yusec. It has two registers, the usual complement
of fixed point arithmetic, logical, shift, rotate, and skip
instructions, single level indirect addressing, and a 16-
channel priority interrupt system. Associated with the
system is a DEC tape transport capable of holding two
microtapes, a 300-lpm (Analex) printer, a 131,072-
word, slow-speed, magnetic drum (35 msec/256 words),
a DEC type-30 scope for program editing, a DEC 340 dis­
play with four slave scopes and light pens, a Data Equip­
ment Corporation Grafcon (Rand) tablet, a CaI Comp
plotter, and various assorted devices for interactive in­
put. The particular configuration is shown in Figure 1.

Software Organization. The PDP-I system software
includes one programming language called DECAL, which
provides procedures; "for" loops; and conditional,
arithmetic, and assignment statements, and which in
these respects is similar to ALGOL. Subscripting and
floating point operations can be executed interpretively.
DECAL also permits intermixing of assembly language
with DECAL source statements and can be extended by
user-defined "action operators" and "instruction gen­
erators."

y

\pisplays/

I Perception of

Structural
I Features

Graphical
Communication

Strategy

and
Control

t
Evaluation

I Plotter \.

Symbolic
Structural
Manipulation

Figure 2. Functional subdivisions of LHASA.

The monitor system provides a linking loader which
permits references between memory banks, a simple
text editor which uses Type 30 scope, a debugging pack­
age called DDT, input-output routines, and a subrou­
tine package called LIB340 to simplify use of the 340
display. The capabilities of the display system and a
description of the LIB340 routines are given in Ap­
pendix I.

Organization of LHASA. The program is organized
into five basic functional modules: (1) graphical com­
munication, (2) strategy and control, (3) perception of
structural features, (4) symbolic structural manipula­
tion, (5) evaluation of precursors. The interrelation
of these modules is shown in Figure 2. Each module
performs a specific function and each has well-defined
inputs and outputs. The control module contains a
common data area, a library of basic support routines,
and the master executive. Consequently, the control
module is always resident in memory to coordinate the
activities of the rest of the programs. All other mod­
ules are called by the executive and in principle can share
memory with one another, i.e., only one of the other
four modules need be in core memory at a time—
the time during which that module is being ex­
ecuted. Modular construction not only simplifies
the programming but also provides a way to fit a large
program into a small computer memory. In this way
LHASA, a program of 50 K words, is able to execute on
a computer with a memory of only 24 K words.

Each module consists of many subroutines and one
or more main routines. Groups of these routines
may form subfunctions which are mutually exclusive in
execution and can also overlay one another in memory.
Currently there are eleven overlay segments, each
of which fits into one of three special regions of core
memory, LHASA contains an overlay handler which
assures that a segment is in core before passing control
to it and also avoids rereading the segment from the
drum if the segment is already present in core. The
time required to bring an overlay segment (3 K words
long) from the drum into core memory is about
0.23 sec.

Typical Analysis. A typical analytic session with
the computer will now be described from two vantage
points: that of the chemist treating the program as a

Journal of the American Chemical Society / 94:2 / January 26, 1972

file:///pisplays/

COMPUTER CHEMIST

423

TYPE START LHASA

MOUE ERRSH DRFlW RESTART

MONITOR SYSTEM
STARTS LHASA

INITIALIZE DISPLAYS

ENTER MOLECULE
AS IS DRAWN

DRAW IN TARGET
MOLECULE

REQUEST PROCESSING

PERCEIVE.EVALUATE,
AND NAME TARGET

SPECIFY PREFERRED
ACTIONS/STRATEGIES

REQUEST EXECUTION

—»

CHOOSE MECHANISMS
AND ASSIGN RATINGS

APPLY TRANSFORMS IN
ORDER OF RATING

EVALUATE AND
DISPLAY PRECURSORS

>

J

\INTERRUPTED BY
CHEMIST, OR ALL
\TRANSFORMS
\C0MPLETED

DELETE BAD STRUCTURES
FROM TREE

START PLOTTER » REQUEST HARD COPY

or

TRY NEW STRATEGY OR
DESIGNATE INTERMEDIATE
STRUCTURE AS TARGET
FOR FURTHER ANALYSIS

RESTART WITH NEW
TARGET

CONTROL RETURNS
TO MONITOR CONCLUDE ANALYSIS

30 SEC

5 - 3 0 SEC

5-20 SEC

5 - 6 0 SEC

20 SEC-
2 MIN.

3SEC/
STRUCTURE

2SEC/
STRUCTURE

ISEC

0.1 SEC

01 SEC

Figure 3. Man-machine interaction diagram. Arrows indicate
the flow of control between the chemist and the computer during an
analysis session. Approximate times required for each stage of
processing are shown at right.

"black box" and that of the program's internal opera­
tions in response to the chemist's requests.

The overall flow of control between man and ma­
chine during analysis is diagramed in Figure 3. Typ­
ical elapsed times for each phase are shown at the right
of the figure. While the computer has control, the
chemist's controls are deactivated. Lengthy processes
may be interrupted by the chemist by depressing the
pen anywhere in the drawing box. The program then
returns control to the chemist, flashing a message (You
called?) when it reaches a convenient stopping place.
As much as half of the time for an analysis is that re­
quired for the chemist to make a decision and notify
the program.

Viewpoint of the Chemist. Once the program has
been started via teletype commands to read the contents
of a microtape into the computer and to start the pro­
gram, there are two displays on the scopes at any one
time (see Figure 4). Scope 1 contains the input display
(display 1), and scope 2 has the title and buttons on
what will later become the tree display (display 3).

1«

BOND
FIX
DOME
CRRSH

C H M 0 P S X •<- t -

UP DCiWM MODE

LIMERSE XCT
IB

FS MUM

FS Straus

FS MTRO

TFr FSI EXCH

00 FOt EXCM

cr ~~u

GOOD BRD

SYNTHESIS TREE

STRUCTURE
IHDEX

ES M IS

Figure 4. (Top) Display 1. (Middle) Display 2. (Bottom) Display 3.

(Display 2 replaces display 1 at a later part in the anal­
ysis.) The position of the tip of the Rand pen in x,y
coordinates is displayed on scope 1 as a small cross.
Whenever the chemist presses the pen down on the
tablet, the cross becomes brighter. Most of the words
and symbols on the display are "buttons" (control

Corey, et al. / Computer-Assisted Synthetic Analysis

file:///INTERRUPTED
file:///TRANSFORMS
file:///C0MPLETED

424

words) which can be activated by moving the tracking
cross via the pen to the first letter in one of the words
and depressing the pen. The word touched will be­
come brighter and remain so until the pen is depressed
outside the drawing box. Whenever this operation
is applied to the word DRAW, the program is ready to
accept new structural input. Structures are input
within the center box, using the standard organic chem­
ical format, where a line represents a bond, and nodes,
or the ends of lines, represent atoms. All atoms are
assumed to be carbon unless specified otherwise. Since
the program assumes saturation of all atoms, hydrogen
atoms are drawn ordinarily only to specify stereochem­
istry or to create familiar-looking functional groups.

To draw a bond, the pen is depressed inside the
drawing box and moved along in this "pen-down"
state. A line appears joining the point where the pen
was pushed down with the current coordinates of the
pen. When the pen is lifted, the line is "frozen." If
the end point of a line is reasonably close to the end
point of another line, the end of the new line is shifted
to that of the old. Thus drawings can be somewhat
sloppy, but the display will be automatically corrected.
Drawing additional bonds between two atoms which
are already connected creates the display of a double
bond, and then a triple bond. If one attempts to
draw excess bonds to any atom, the message VALENCE
EXCEEDED is flashed on the screen and the offending
bond is erased.

Atoms may be specified as noncarbon by pushing
the pen down on one of the six atomic symbols at the
bottom of the drawing box. This transforms the
tracking cross into whichever symbol was pushed.
When the chemist then depresses the pen on a node
in the molecule, a copy of the symbol "sticks to" the
node. The three remaining symbols in the atom sym­
bol line at the bottom of the box—plus, up-arrow, and
minus—are used similarly to designate atoms that are
positively charged, free-radical, and negatively charged.
The presence of a charge on an atom allows attach­
ments to that atom in excess of the normal valence.

Once a structure has been drawn, the chemist may
straighten up the molecule or move certain atoms out
of the way of others to make a drawing less confusing
by pushing the MOVE "button." Then, when the pen
is depressed on an atom, the atom appears glued to
the tracking cross. As the depressed pen is moved,
the atom and all bonds attached to it follow the pen
tip until the pen is raised.

Input mistakes may also be corrected by pushing
the ERASE button. While the ERASE word is bright,
pushing the pen down on an atom causes deletion of
that atom and all bonds connected to it. A bond may
also be deleted by depressing the pen on the middle of
a bond. Any isolated atoms remaining after an atom
or bond deletion are automatically removed. Artistic
disasters may be destroyed by pressing the RESTART
button, which completely clears the drawing box and
reinitializes the atom and bond tables.

Pressing DOWN and then pointing to a bond in the
structure turns that bond into a dotted line. Dotted
bonds may be restored to their normal state by the use
of the UP button. This process is useful only to give a
three-dimensional appearance to a display, since this
program does not yet understand stereochemistry.

The chemist may specify particular parts of the mole­
cule to be worked on. To do this, he indicates one or
more sites of strategic disconnection by pushing BOND
and then pointing to the desired bonds. These bonds
become bright, and all nonstrategic bonds dim slightly.
Pointing to a bond again restores it to its original state.
The appearance of the display may be returned to
normal by touching the MODE button, with the knowl­
edge of the strategic bonds being retained. They can
be shown as bright bonds again by pushing the MODE
button once more.

At this input stage, preceding any analysis, there are
no restrictions on the order or number of times that
these input commands can be used. However, once
the input stage is ended, only the MOVE and the BOND
commands can be used to "fix up" structures, and if
such later changes are to be made permanent, FIX must
be pushed after the changes have been made.

The remaining buttons, DONE or CRASH, can be
pushed at any time in the analysis to stop the pro­
gram and return control of the computer to the system
programs.

Once the target molecule has been completely drawn,
the chemist begins analysis by pointing to PROCESS.
The commands on scope 1 (display 1) are replaced by
a new set of commands (display 2). The target mole­
cule and the box remain unchanged by this operation.
Meanwhile the program is "processing" the target,
perceiving functional groups and rings3a and assigning
an identification number. Return of control to the
chemist is signalled by a message.

Ordinarily the chemist will wish to specify a strategy
and request a synthetic analysis. The available stra­
tegies315 at present consist of one-group and two-group
analyses, the latter with or without detection of val­
uable functional group exchanges. Pushing FG PAIRS
or FG SINGLES selects a strategy; TRY FGI EXCH adds
the search for group exchanges, DO FGI EXCH requests
performance of a previously created list of exchanges.
Pushing XCT then starts the selected analysis. "The
computer's default strategy is to try all strategies se­
quentially until one succeeds in generating a new inter­
mediate.

Synthetic analysis proceeds in three stages: further
perception, matching of the perception results against
data tables,3b and display of the results. An ap­
propriate message is flashed at the beginning of each
stage. Each structure which results from the analysis
of a given target molecule is displayed (display 2 of
Figure 4) along with a three-letter mnemonic desig­
nating the transform (retrosynthetic process, see ref 3b)
involved and a number designating the rating for that
transform. In the example shown in Figure 4, the
target molecule input by the chemist, a tricyclic an­
hydride, is shown in display 1; one of the intermediates
(no. 16 in the synthesis (a cyclopentene produced by
ozo, a transform corresponding to the synthetic
ozonolysis of C H = C H to form CHO OHC) is shown
in display 2; and the complete synthetic tree appears
in display 3.

At the same time as a new intermediate is displayed,
a new node bearing this structure's "index number"
is added to the synthetic tree in display 3 (see below).
The index number (in this case "16") appears in dis­
play 2 above the new intermediate. The index num-

Journal of the American Chemical Society j 94:2 / January 26, 1972

425

bers for every ancestor of this intermediate are dis­
played in the upper left corner of display 2 under LINE­

AGE. For this example the ancestors of the inter­
mediate 16 shown in display 2 are structures 7, 4, and 1.

The display of each new intermediate remains on
the screen while the computer is "evaluating" the struc­
ture, checking it for valence violations and possible
duplication of an earlier structure. When evaluation
is finished, a display of the current target (i.e., the
particular structure in the synthetic tree which is the
subject for analysis) replaces the new structure in dis­
play 2 while another intermediate is being generated.
If the structure failed its evaluation, it is deleted from
the synthetic tree. Otherwise it may be recalled by
the chemist after the analysis is finished, or inter­
rupted by the chemist.

When the computer has finished its analysis of the
current target, the chemist's control buttons are re­
activated. The numerous options now available to
him will be discussed.

The TREE button, in the lower left corner, transfers
the display of the cross (and control by the chemist)
onto scope 2, where the current synthesis tree appears
(display 3). Each node in the tree is a control button,
labeling one of up to one hundred intermediates in the
computer's structure index. Pushing a node button is
the way the chemist designates a new "current" target.
The molecule corresponding to that node in the tree re­
appears on scope 1 and a cursor symbol " < " is gen­
erated next to the tree button being pushed. The new
current target can be subjected to synthetic analysis
just as before, by selecting a strategy and requesting
execution. A permanent copy of the current target
can be made on the CaI Comp plotter by pushing the
display 3 button STRUCTURE, whereas pushing INDEX
makes a hard copy of the synthesis tree display. A
series of structures can be "stacked" for hard copy
without waiting for earlier drawings to be finished and
while a subsequent synthetic analysis is going on. A
structure for which a plot has been requested is in­
dicated by a " ." symbol after the corresponding node
in the synthesis tree.

Pushing PROCESS on scope 2 returns the cross dis­
play to scope 1. From display 2 the chemist can delete
the current target from the synthesis tree by pushing
BAD, while GOOD intensifies display of the synthetic tree
branches leading from the input target down to the
current target, INPUT allows return to the structural
input display, to make any of the changes to the current
target previously described as legal when the initial in­
put phase has ended. From the input display the
chemist may also RESTART the program with a new target
structure or CRASH back to the monitor system.

Machine Execution. The flow of control in the man-
machine system has just been examined. In discussing
the flow of control within the machine, it is helpful to
utilize a state diagram as shown in Figure 5.4 The ex­
ecuting program may be treated as a limited-state ma­
chine which can only be in one state at a given time.
The states are represented by ellipses. The labeled
lines leading from each state represent the possible
changes-in-state that may occur. A label on a line
specifies the input condition that must exist for a given

(4) W. M. Newman, AFIPS Con/. Proc, Spring Joint Computer Conf.,
32, 47 (1968).

Figure 5. State diagram of LHASA. The result of "pushing" one
of the graphics buttons is indicated by an arrow with the name of
that button on it. Return to the INPUT WAITLOOP state from any
of the five states attached to it (DRAW, MOVE, etc.) is accomplished
by pushing the pen down anywhere outside the drawing box. The
terms "PD" and "PU" mean "pen down" and "pen up," respectively.

change of state to occur. Thus, while in the INPUT
WAITLOOP state, the program continually interrogates
the RAND tablet for instructions from the chemist to
enter a new state. For example, when the chemist
points to the word DRAW, the DRAW state is entered.
While in this state whenever the pen is pressed down in­
side the drawing box, a temporary line is started, and
the line is updated until the pen is lifted. On the way
back to the DRAW state, the line is entered as a bond.
Drawing is allowed only within the drawing box. If
the pen is pressed down outside the drawing box, the
program returns to the INPUT WAITLOOP state, from
which it may then enter any of the other connected
states.

After a molecule is drawn and the PROCESS button is
pressed, the input display is replaced by display 2, and
the target molecule is perceived, evaluated, given a can­
onical representation, and entered at the top of the syn­
thetic tree. These operations are described in later
papers. The PROCESS WAITLOOP state is then entered.
The program now waits for special requests or for XCT,
the command to proceed. Buttons labeled DO FGI
EXCH and TRY FGI EXCH cause certain flags to be set and
then return the program to the PROCESS WAITLOOP state.
The XCT button releases LHASA to enter the RUN state
where it begins analysis of the current target structure
in accordance with any special request flags that were
set. If no flags were set, RUN chooses a strategy based
on the structural features of the target molecule and
guides execution according to that strategy (see ref 3b
for details). The executive directs the selection of
transforms, generation and display of precursors, eval­
uation of precursors, and updating of the synthesis tree.
Return from the RUN state occurs automatically when
it has completed generation of one level of precursors,

Corey, et al. / Computer-Assisted Synthetic Analysis

426

but may occur prematurely if the chemist interrupts or
if the program is out of core memory or drum memory.

Graphics Programming. There are three basic con­
trol displays in LHASA, although only two scopes are
used. These are DISPLAY 1, the input controls,
visible on scope 1 when in the INPUT WAITLOOP state;
DISPLAY 2, the processing controls, visible on scope 1
after LHASA enters the PROCESS WAITLOOP state; and
DISPLAY 3, the synthesis tree and output controls,
visible on scope 2 at all times (see Figure 4).

The graphics module consists of three types of pro­
grams, those which create static displays such as con­
trol words, those which create dynamic displays such as
structural diagrams, and those which handle graphical
interaction with the chemist. The static displays are
created only once by GENFRM during the initialization
process. GENFRM generates the display code executed
by the 340 scopes for each of the three basic displays,
including control words, the drawing box, the tracking
cross, and the main Frame program shown below.

Table I. Summary of LHASA Control "Buttons"

Frame
top Display LHASA

Call DISPLAY1/DISPLAY2
C a l l STRUCTURE
C a l l INDEXPICT
C a l l TEMPBOND
Call DISPLAY3
C a l l MESSAGE
C a l l STAT
C a l l TRACKER

Go to top

Title of program
Control of INPUT/PROCESS
Current structure pict
Synthesis tree pict
"Rubber band bond"
Control of TREE state
Flashing messages to chemist
Statistics of memory resources
Tracking symbol for pen
Loop to refresh display

Substitution of DISPLAY 2 for DISPLAY 1 is accom­
plished by simply substituting the "call" in the appro­
priate position in the frame. The other picture calls are
self-explanatory from the comments beside the calls to
them. Pictures are removed from view by replacing
the call to that picture by a call to a dummy picture
which displays nothing.

GENFRM also sets up the lines of communi­
cation to be followed when any of the control but­
tons are pushed, by storing the name of the action rou­
tine with the location of the displayed control word
text. Both the display and the lines of communication
are established by a simple call to BUTTON ("text," x, y,
action routine, arbitary parameter).

The remaining routines in the graphics module dy­
namically create the code necessary to display the struc­
ture (GENSTRUC), the synthesis tree (structure index)
(GENIDX), and the lineage of the current structure
(GENLIN). GENSTRUC operates from the connec­
tion table and creates display instructions to display the
structure represented by the tables. As indicated
above, bonds that are "down" are displayed dotted,
and "strategic bonds" are displayed brighter than
others. When a new picture code has been completed,
GENSTRUC substitutes the new picture for the old.

Similarly, GENIDX operates from the actual tree
structure of intermediates and creates a display pro­
gram to display the structure of the current synthesis
tree. Each node of the tree is labeled with the unique
number designating the structure it represents. When
a structure is evaluated by the chemist as being good,
the corresponding symbol in the tree and the path from
the target to that symbol are displayed more brightly
than the others. In this way the chemist can easily
keep track of those synthetic paths in which he is most
interested even when the synthetic tree contains many

DISPLAY 1
DRAW

ERASE

MOVE
RESTART
C,H,N,0,P,S,X, + ,

t , -
UP

DOWN

MODE

PROCESS

BOND

FIX

CRASH

DISPLAY 2
XCT

FG PAIRS

FG SINGLES

FG INTRO

TRY FGI EXCH

DO FGI EXCH

GOOD

BAD

INPUT

DISPLAY 3

STRUCTURE

INDEX

INPUT

PROCESS

TREE NODE

Enter the DRAW state
Enter the ERASE state
Enter the MOVE state
Erase structure and tree and start fresh
Attach this symbol to the pen point for

atom modification
Enter mode for designating " u p " bonds
Enter mode for designating "down" bonds
Display/don't display specified strategic

bonds
Leave INPUT state and enter PROCESS state
Enter mode for designating strategic bonds
Record new atom coordinates of modified

intermediate
Terminate analysis session and return to

monitor
Return to monitor immediately

Begin analysis (Enter RUN state)
Try only 2-group chemistry
Try only 1-group chemistry
Try functional group introduction

(dummy)
During analysis of possible transforms find

group interchange subgoals
Try group-interchange subgoals if there

are any
Designate current structure "good"
Delete current structure and subtree if any
Leave PROCESS WAITLOOP state and enter

INPUT WAITLOOP state

Leave PROCESS WAITLOOP state and enter
TREE WAITLOOP state

Queue current structure for hard copy
output

Queue picture of current tree for hard copy
output

Leave TREE WAITLOOP state and enter
INPUT WAITLOOP state

Leave TREE WAITLOOP state and enter
PROCESS WAITLOOP state

Display this structure and make it the
current target

nodes. The tree appears with each parent centered
over its sons, and the sons are evenly spaced. The tree
thus is always centered and balanced on the screen re­
gardless of structure.

GENLIN traces the lineage of the current structure
up the tree to the target structure and displays this
under the word LINEAGE on display 2. The number
of the structure is displayed directly above the drawing
box. It also displays the name and the rating of the
transform315 which produces the current structure.
This information comes from the structure data block
(see Figure 6). The numbers at the lower left of dis­
plays 1 and 2 indicate, from top down, the per cent of
dynamic storage currently in use, the per cent of list
storage currently in use, and the number of unused
drum tracks (each track is 25610 words) (see below).

HIT5 is a collection of over 25 programs which han­
dle interaction by servicing the numerous buttons on
the displays. The main routine, called WAITLOOP,
simply watches the pen status until it changes to pen
down. At that time checks are made to see what state
LHASA is in and whether the pen is in or out of the draw­
ing box area. If the pen is outside the drawing box,
then the pen coordinates are compared with the list of
button coordinates. If the coordinates of the pen and

Journal of the American Chemical Society j 94:2 / January 26, 1972

a button correspond, control is transferred to the action
address stored with those coordinates.

The action routine then may change the display,
change the state of LHASA, or begin a long sequence of
computation. Eventually the routine returns control
to WAiTLOOP, which waits for more interaction.

Two of the buttons call routines which initiate yet
another type of graphic program, the plotter program.
When a permanent (hard) copy of a structure is re­
quested, RELOC is called which builds a relocatable
version of the display code for the requested picture.
The new display list is written onto the drum, and an
asynchronous program called PLOT is initiated. This
routine reads the display file on the drum and interprets
it just as the DEC-340 hardware does, except that the
program then outputs instructions to the plotter to
simulate the actual display by the 340 scope. When­
ever the plotter completes a command, it interrupts the
computer, which may have been doing chemistry, asks
PLOT to provide the next instruction, and then allows
the computer to return to whatever it was doing. This
programming technique allows the chemist to request
many structures and then to continue chemical proces­
sing. A queue of structures is created on the drum.
When PLOT finishes one structure, it releases space on
the drum occupied by that structure and looks to see
whether there is another. Since PLOT has all the in­
structions for plotting stored on the drum, its execution
is independent of whether a structure exists in the syn­
thetic tree at the time the structure is actually plotted—
the structure may even have been deleted by the chem­
ist.

Data Structures. The choice of representation for
information within a computer can have a profound
effect on the ease of manipulation of that information.
We chose the connection table described in reference 1
as the fundamental representation of a chemical struc­
ture. This representation consists of the basic data
inherent in the structural diagram—connectivity, atom
types, and bond types. The stereochemical informa­
tion which is represented is not presently used in the
analysis. All information for structure display and
chemical analysis is obtained from the connection table
of the current structures via a set of simple access rou­
tines. The connection table (CT) used is not unique or
canonical, is not concise, and is not convenient for hu­
man consumption but it does allow the computer direct
and rapid access to structural information. An impor­
tant feature of the CT is that cyclic molecules are han­
dled as easily as acyclic ones and do not have to be
treated as a special case.6

Other notation systems6 gain compactness by using a
single symbol to represent a group of atoms, but then
demand explicit treatment in many special cases when
information is requested which is only implicit in the
notation. The CT differs from DendraP in that Den-
dral is based on a tree structure and is a linear notation,
whereas the CT is based on a generalized connected
graph permitting cycles and is not a linear notation,

(5) D. J. Gluck, / . Chem. Doc, S, 43 (1965).
(6) For a survey of topological representations see A. Opler, Proc.

Amer. Doc. Inst., 499 (1964); F. A. Tate, Annu. Ret. Inform. Sci.
Technol., 2, 285 (1967).

(7) J. Lederberg, G. L. Sutherland, G. G. Buchanan, E. A. Feigen-
baum, A. V. Robertson, A. M. Duffield, and C. Djerassi, J. Amer. Chem.
Soc, 91,2973(1969).

427

PARENT

BROTHER

SON

DISPLAY NAME

MISCELLANEOUS

IDENTITY BL

TRANSFORM

OCK

TYPE

SPECIFIED STRATEGIC BONDS

SPECIFIED STRATEGIC BONDS

MOVE BLOCK

TRANSFORM RATING

No. ATOMS DELETED

ATOM

No. ATOMS ADDED x 2

TYPE

X COORD.

ATOM

Y COORD.

No. BONDS BROKEN

ATOM 1 ATOM 2

No. BONDS MADE

ATOM 1

No. CHARGES

CHARGE

ATOM 2

CHANGED

ATOM

HEADING DATA

CANONICAL NAME

No. OF 2 WORD ENTRIES

ATOM

NEW X NEW Y

LENGTH OF BLOCK • INo. DELETED) + (No. ADDED « 2) + (N o . MADE)

+ (No. BROKEN) + (No. CHARGES CHANGED) + 16

Figure 6. Structure data block. Each structure in the tree is stored
in virtual memory using this format. Only the structure which is
currently being displayed on scope 1 and the original target have
complete atom and bond tables (see text). The space for this block
is dynamically allocated when the structure is first generated.

although it can be made both canonical and linear if
desired.8

LHASA uses only two CT's, one for the target structure,
which never changes during analysis and which is not
available to the access routines, and one for the current
structure. The latter is the active CT. Information
about other structures is permanently stored in blocks,
each corresponding to a node within the synthetic tree
representation (see Figure 6). This block contains all
key information about the structure including the
changes that must be made to its parent in order to gen­
erate the structure. The first words of this block are
pointers to the structure's immediate relations, its par­
ent, immediate right brother, and immediate leftmost

(8) H. L. Morgan,/. Chem. Doc, S, 107 (1965).

Corey, et a/. / Computer-Assisted Synthetic Analysis

428

son. These words are set to — 1 if there is no such re­
lation. The next word contains the number to be dis­
played in the tree as the name of this structure. Word
5 stores flags such as whether this structure was desig­
nated as GOOD or has been plotted yet; word 6 is a
pointer to the canonical name for this structure. The
next word carries the mnemonic which indicates the
transform3b used to generate this intermediate from its
parent. The set of bonds designated strategic by the
chemist are stored in the next two words, while the fol­
lowing word points to a block giving the new coordi­
nates of any atoms reoriented by the chemist. If such an
action was not performed, or if no bonds were named
strategic, then the corresponding word(s) in the struc­
ture block contains zero. Following the move block
pointer is a space for storage of the transform rating.

The remainder of the block contains the changes to
be made to the parent to generate this intermediate.
There are five types of changes: deleting atoms (and
bonds to them), adding atoms (involves computing rea­
sonable coordinates for them), breaking bonds, making
bonds, and manipulating electronic charges (either
moving, deleting, or creating charge). The changes
are grouped by type, each group being introduced by
the number of changes of that type (zero if none). An
atom deleted entry simply contains the name of the
atom. Each atom added entry of two words contains
the atom type to be created and the coordinates of the
new atom. The operation of attaching a new atom to
one already in a structure also makes an entry in the
bond made section. An entry in the bond made or bro­
ken section simply contains the names of the two atoms
involved in the bond.

The charge changing entries contain the charge type
(—0 for neutral, —1 for anion, —2 for radical, and —3
for cation) and the atom on which the charge is to be
placed.

The advantage of representing precursors in this
manner is that the space required to store an intermedi­
ate structure depends only on the changes caused by a
given transform and not on the number of atoms in the
structure. Thus the structural part of a block neces­
sary to describe the precursor of an aldol reaction re­
quires 9 words of memory, regardless of the size of the
molecule. In contrast, to represent this precursor by a
complete connection and coordinate table would take
up 160 words of memory for a medium-sized structure
(20 atoms, 20 bonds).

The disadvantage is that extra time is required to
"recall" a structure to "current" status in re-forming
the proper CT. To do this, RECALL starts with the de­
sired structure block and traces its lineage to the tar­
get. The target CT is copied into the current CT. The
lineage of the desired structure is then followed in the
reverse order traced—from the target down to the de­
sired intermediate, the current CT being modified ac­
cording to the changes indicated by each structure
block in the lineage. The extra processing required
for this is small, since although the tree may be very
wide, it rarely attains a depth of greater than 12. With
the current program and operating system the space
saved is crucial, since the real limitation is available
memory.

The canonical representation of the structure is
simply a linear bit string constructed from the type of

unique compacted connection table generated by the
Morgan algorithm.8 The length of the string used in
LHASA is 2 + (14 X nb)j\% words where nb is the num­
ber of bonds between nonhydrogen atoms, and the
words are 18 bits long. Thus the name for cubane is
11 words long. Duplication between structures is
tested by comparison of names starting at the first
word. Since the first word contains the number of
atoms and bonds, the matching need proceed further
only if the structures being compared have the same
number of atoms and bonds. The Morgan format has
been adequately documented elsewhere8 and will not be
discussed here.

The philosophy in the development of LHASA has
been to let the data and the uses of the data determine
subsequent data structures. This has resulted in a
variety of different types of data structures and rou­
tines to handle them:2d arrays—the normal FORTRAN
type of subscripted array, except the memory for them
is dynamically allocated; ^-component blocks—a
block of contiguous dynamic storage accessed by spe­
cial routines (a "dynamic" operation is one that is car­
ried out as the program is running, in contrast to an
operation such as allocation of array space by FORTRAN,
which is done before program execution); set—a
block of three contiguous words in which the /th bit is
a one if the rth thing is a member of this set; otherwise
the rth bit is zero; list—series of two-component
"cells," the first component usually contains data, and
the second addresses (points to) the next "cell" in the
list; combinations—arrays of sets, lists, or n-compo-
nent blocks; lists of ^-component blocks; etc.

Each format was used where it was most efficient and
convenient. Thus the set operations were found to be
very powerful for parallel processing of structural in­
formation. The sets take advantage of the compu­
ter's ability to perform Boolean operations on 18 bits
simultaneously. The use of sets has been described
previously111 and is further discussed in the following
paper.3a

Similarly, lists have been found convenient for stor­
ing variable length information quantities such as the
atoms in a ring or the atoms in a functional group.
Finally, conversion routines have been used which con­
vert a list of items into a set of items for logical opera­
tions with other sets.

Resource Management. The use of diverse data
structures in this work has been aided by a general
dynamic storage allocation package93 which uses a
simple algorithm developed by Dr. J. Goodenough for
the Harvard PDP-I. Requests for blocks of storage
can be of any size and are filled on a first fit basis. Free
storage, originally one large block, becomes frag­
mented as storage is allocated and released. All
blocks are then linked together by ascending core ad­
dress, and a tag in each link is used to indicate whether
the block is free or used. Allocation then requires a
simple scan down the chain for the first free block
large enough to fill a request. Release of a block
changes the tag to indicate "free," and adjacent free
blocks are merged to form one large contiguous block.
This algorithm is not particularly efficient when a large
percentage of dynamic storage is filled with small

(9) (a) D. E. Knuth, "The Art of Computer Programming," Vol. 1,
"Fundamental Algorithms," Addison-Wesley, Reading, Mass., 1968, p
435; (b) ibid., p 251.

Journal of the American Chemical Society / 94:2 / January 26, 1972

429

blocks because the search time to find a free one is
lengthy.

The percentage of dynamic storage used is displayed
on scope 1. Typical storage utilization ranges as high
as 90%. Running at such high utilization, however,
is dangerous because one request which cannot be filled
causes failure of the program. To prevent the pro­
gram from continuing synthetic analysis when free
storage is at a dangerously low level, the executive
monitors the level and, when necessary, returns control
to the chemist with the message "dynamic storage low."
The chemist can then prune the synthesis tree to gain
more storage and proceed.

The storage used for lists is separate from general
dynamic storage and is maintained by the common
method9b of having a list of free cells. Allocation of
list cells is very efficient, since they are all the same
size. Return of lists to the free cell pool is the respon­
sibility of the programmer as with IPL-V,

 10 in contrast
to SLIP11 or LISP,12 which automatically return a list
when it is no longer referenced.

Virtual Memory. In the earliest versions of the
program no auxiliary storage was used, causing a
severe demand for core memory as the number of inter­
mediates generated grew. This occurred not only
because the structure representation resided in core
but also because the display file for the synthetic tree
and other display information which grew with the
number of structures also resided in core.

To relieve this problem, the effective size of memory
has been expanded by 131 K of virtual memory. The
virtual memory actually exists only on the drum, but
through the use of an access package and some instruc­
tion generator macros, it may be referred to by the
programmer much as though it were in core memory.
Virtual memory is also dynamically allocated and re­
leased in a similar manner to core memory. Only
minor changes to LHASA were required to move all
structure blocks (Figure 6) and canonical names to
virtual memory. This move increased the running
time of the program only 5%. The virtual memory
package, developed in collaboration with Mr. John
Newell, will be discussed more fully in a later paper.

Acknowledgment. We are indebted to the National
Institutes of Health for financial assistance to this
project and to the Advanced Research Projects Agency
for their support of the Harvard Center for Research
in Computer Sciences.

Appendix I
The DEC-340 display controller obtains its instruc­

tions from the PDP-I memory by "cycle-stealing." It
can interpret only seven different kinds of instructions.
The parameter (PRM) instruction specifies one of eight
intensity levels, one of four scales, and provides a way
to stop the display. The point (PNT) instruction posi­
tions the display beam in absolute scope coordinates
in the x direction or the y direction. The slave (SLV)
instruction specifies the particular scopes on which the
picture is to appear. The beam on each of the other
displays follows the same movements, but is blanked.
The subroutine (SBR) instruction permits structuring of

(10) A. Newell and F. M. Tonge, Commun. Ass. Computing Mach.,
3, 205 (1960).

(11) J. Weizenbaum, ibid., 6, 524 (1963).
(12) J. McCarthy, ibid., 3, 184(1960).

an image. Typically one positions the beam and then
calls a symbol subroutine. The subroutine then draws
the symbol using only relative vectoring instructions.
In this way the same symbol may appear several places
on the display.

The vector (YTR) instruction causes a vector (line) to
be drawn from the current beam position to a point
(x + dx, y + dy). The 340 display can only represent
a vector 128 units in x and y in one instruction. Thus
the number of instructions required to draw a given
line depends upon the length of the line. The incre­
ment (INC) instructions allow the specification of up to
four moves of the beam. They are used to perform in­
cremental plotting (e.g., to generate a vector of 512
units in x and y) and also to define characters and spe­
cial symbols.

Standard characters are displayed by a hardware
character generator using the character (CHR) instruc­
tion. Because the format of the instructions varies,
each instruction must tell the mode of the next instruc­
tion. A sample program to display the tracking cross
and the title "LHASA" is given in Table II (explanatory
comments at right).

Once started, the display runs independently of the
PDP-I central processor and produces a static picture.
To change the picture being shown, the 340 display list
must be changed. This can be done by changing se­
lected instructions or by regenerating the complete list.
In practice the former method is used for minor
changes (e.g., intensity or pen coordinates) and the lat­
ter for major alterations, LHASA utilizes a set of DECAL
subroutines to create the display list dynamically and to
handle dynamic storage allocation.

In LHASA there is a hierarchy of pictures—a frame,
pictures, and subpictures. The frame is the master pro­
gram made up of calls to pictures and subpictures.
The scope control unit must start at the beginning of a
frame. The display continuously runs through the
frame. If the call to a picture is present in the frame,
then that picture is visible. The routines to create
these items are given below

frame name • < = SFRM (POSTS, ia, fa)
EFRM()

pict name • < = SPICT (ia, fa)
EPICT()

subpict name • < = SSUB (ia, fa)
ESU B()

where SFRM, SPICT, and SSUB declare the beginning of a
frame, picture, and subpicture, respectively, POSTS is
an array the length of the number of pictures. The
routines use ia and fa as the initial and final address of a
region of core in which the display code will be gener­
ated. If ia = 0 and/a ^ 0, then/a is used as an initial
estimate for the amount of dynamic storage required
for the display code. If ia = fa = 0, then a block of
free storage is found which is just big enough to hold the
display list generated. The routines return the begin­
ning address of the display list.

DDN (decimal number)
DST (address of character string)

Display decimal number or character string.

LINE (dx, dy, intensify)

Corey, et al. / Computer-Assisted Synthetic Analysis

430

Table II. Sample Graphics Program Using DECAL

CROSS:

csAVE:

sc2 ILV4
SLV 5555
YBP 767
XBP 319
DJS CROSS
PNT
YBP 920
XBP 400
sc8 ILV7
••371410
••012301
• 0 0
SBR
DJP START
DDS CSAVE
VDX —5
VDX 10
VDX —5
VDX 0
SBR
DJP

PNT
PNT
SBR
SBR

PNT
PRM
CHR

VTR
VDY
VDY
VDY
VDY

PRM

0
0

- 5
10

IFY

IFY ESC

Scale 2 intensity 4
Display on all 4 slave scopes
Position in Y
Position in X
Call cross subroutine
Enter point mode
Position in Y
Position in X
Scale 8 intensity 7
Up shift, L, H"
A 1 S 1 A
Escape from character mode
Enter subroutine mode
Loop to refresh display
Save return address
Invisible vector
Draw visible line (horizontal)6

Invisible vector
Draw line (vertical) and escape
Enter subroutine mode
Return to calling routine

: Each character is represented by a 2-digit octal number (six bit code). * VDX n = let the component along X be set to n.

Table III. Program for Display of Movable Line

LOOPl : TEMP - < = SPICT (0, 0)
SCALE (1); INTENSITY (4)
POINT (Xl1 Yl)
LINE (PENX1 PENY, 1)
EPICT ()
ARRASE NEWLINE
NEWLINE <== TEMP
SUBSPICT (3, NEWLINE1 SCOPE 1)
IF PENDOWN THEN GOTO LOOP 1

Start generating pict code
Set scale and intensity
Move beam to start of line
Draw line to current position
End picture code
Release old display code
Rename the picture
Substitute the new picture
Loop until pen is lifted

Draw line from current position (x, y) to (x + dx,
y + dy). If intensify = 1, the line is visible; '^inten­
sify = O3 invisible.

POINT (x, y)

POINT creates instructions to position the beam to (x, y).

SCALE (1,2, 4, or 8)

INTENSITY (0-7)

SCALE sets the scale of the display to one of four values.
INTENSITY sets the brightness of the beam to one of 8

values.

CALL (subpict name)
POST (pict name, slaves)
INITIATE (frame name, slaves)
CSCOPE (i, slaves)
SUBSPICT (/', pict name, slaves)

CALL inserts a reference to a subpicture in the code be­
ing generated.

POST puts a picture in the frame, and slaves specifies on
which scopes the picture should appear.

INITIATE starts the display processor execution of the
frame.

CSCOPE changes the slave assignment of the /th picture
in the frame.

SUBSPICT substitues a new picture for the /th picture in
iheframe.

The sample program in Table III dynamically gener­
ates a "rubber-band-like" line between point (Xl, Yl)
and the current pen position (PENX, PENY). The
old display list is returned to available memory, and
the new display list is substituted for its place in the
frame. In this example PENX, PENY, and PEN-
DOWN are dynamically updated by an interrupt han­
dling program every 40 milliseconds (25 Hz).

Journal of the American Chemical Society / 94:2 / January 26, 1972

